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Abstract. We generalize an analogy between rotating and stratified shear flows. This analogy is summa-
rized in Table 1. We use this analogy in the unstable case (centrifugally unstable flow vs. convection)
to compute the torque in Taylor-Couette configuration, as a function of the Reynolds number. At low
Reynolds numbers, when most of the dissipation comes from the mean flow, we predict that the non-
dimensional torque G = T/ν2L, where L is the cylinder length, scales with Reynolds number R and gap
width η, G = 1.46η3/2(1 − η)−7/4R3/2. At larger Reynolds number, velocity fluctuations become non-
negligible in the dissipation. In these regimes, there is no exact power law dependence the torque versus
Reynolds. Instead, we obtain logarithmic corrections to the classical ultra-hard (exponent 2) regimes:

G = 0.50 η2

(1−η)3/2
R2

ln[η2(1−η)R2/104]3/2 . These predictions are found to be in excellent agreement with avail-

able experimental data. Predictions for scaling of velocity fluctuations are also provided.

PACS. 47.27. -i Turbulent flows, convection and heat transfer – 47.27.Eq Turbulence simulation and
modeling – 47.27.Te Convection and heat transfer

1 Motivation and objectives

At sufficiently large Reynolds number, the fluid between
co-rotating coaxial cylinders becomes turbulent, and a
significant momentum transport occurs between the two
cylinders. In the case with rotating inner cylinder and rest-
ing outer one (the so-called Taylor-Couette flow), detailed
measurements show that the torque applied at cylinders
by the turbulent flow is a function of the Reynolds num-
ber R. There is no clear consensus about this dependence
yet: marginal stability computation of King et al. [1] or
Barcilon and Brindley [2] predict that the non-dimensional
torque G = T/ν2L, where L is the cylinder height should
vary like G ∼ R5/3. Old experimental data indicated the
existence of two scaling regimes, one for R > 104 where
the exponent is 1.5, and one for larger Reynolds number,
where the exponent switches towards 1.7− 1.8 [3–5]. Re-
cent high precision experimental data yielded no region
of constant exponent, and revealed a transition with a
marked change of approximate slope of G as a function of
R [6,7]. This observation led Eckhardt et al. [8] to pro-
pose a new theory, in which the dependence G versus R is
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through a superposition of scaling laws (describing contri-
bution from a boundary layer and the bulk flow). They
claim that this superposition fits the data better than
the Prandtl-Karman skin friction law proposed by [6,9,7].
Note that all the scalings are within the theoretical bound
derived by Doering and Constantin [10], which implies
that the non-dimensional torque cannot increase faster
than R2.

The observational features are reminiscent of heat
transport in turbulent thermal convection, where approxi-
mate scaling laws and transition between different regimes
have also been observed (for a review see [11]). In fact, this
similarity is pointed out in [6], and in [8], and similar tech-
niques are used in [1,12] and in [11,8] to derive theoreti-
cally the scaling regimes in the Rayleigh-Bénard system,
and in the Taylor-Couette system. However, the similar-
ity is more than superficial: as well known since several
decades [13], there is an exact analogy between equations
of motions of rotating and stratified shear flows (stable or
not). There must therefore exist an exact analogy between
the momentum and heat transport in these two systems,
although it has so far never been explored. Our goal here
is to derive this analogy, and examine its consequences
in the unstable regime, where the angular momentum or
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temperature stratification leads to a linear instability. We
thus in this paper mainly focus on the analogy between
centrifugally unstable Taylor-Couette flow, and convec-
tion.

2 The analogy

2.1 Reminder

The root of the analogy can be found in the Lamb formu-
lation of the Navier-Stokes equations:

∂tu− u× ω = −∇
(
p+

u2

2

)
+ ν∆u, (1)

where ω is the vorticity, p is the pressure and ν the molec-
ular viscosity. The constant density has been set equal to
one for simplicity. In a rotating shear flow u = V (r)eθ , the
vorticity is only in the axial direction and the Lamb vec-
tor u×ω acts only in the radial direction. Its contribution
can be split in two parts:

er · (u× ω) = V S + 2
Ω

r
L, (2)

where L = rV is the angular momentum, Ω = V/r is
the angular velocity and S = r∂rΩ is the shear. The first
contribution is the exact analog of the Lamb vector of
a pure shear flow, in a plane parallel geometry. The sec-
ond contribution reflects the stabilizing influence of the
Coriolis force. Its analog would be produced by temper-
ature stratification in the spanwise direction of a planar
shear flow. The equation of angular momentum conser-
vation then suggests to split further this analogy by re-
quiring that 2Ω/r ∼ βg, where g is the gravity, and β a
coefficient of thermal expansion, and L ∼ Θ, the potential
temperature. This remark is at the heart of the analogy
between the stability properties of rotating and stratified
shear flows, and has been used in the past (see e.g. [13]...).
Our point here is to show that it can be extended into the
turbulent regime, via a new Langevin model of small-scale
turbulence. This new model is based on Rapid Distorsion
Theory, i.e. on linearized equations for the small-scale mo-
tions. This linear structure explains the possibility of ex-
tension of the analogy towards the turbulent regime.

2.2 The turbulent model

The turbulent model has been described and tested
in [14] for general 3D flows, in [15,16] for shear flows and
in [17–20] for stratified shear flows. In this model, the
dynamics of the turbulent flow is obtained from solutions
of two coupled sets of equations. The first one described
the dynamics of the mean velocity U:

∂tUi + ∂jUiUj + ∂j〈u′iu′j〉 = −∂iP + ν∂j∂jUi, (3)

Here, the primes denote fluctuating quantities and 〈〉 the
averaging. To close the system, we need 〈u′iu′j〉. They are
obtained as solution of a linear, stochastic equation valid
for localized wave-packets of velocity and temperature:

Dtûi = −ikip̂− ûj∂jUi − νtk2ûi + f̂i

kiûi = 0, (4)

where

û(x,k, t) =
∫
g(|x− x′|)eik·(x−x′)u(x′, t)dx′, (5)

g being a function which decreases rapidly at infinity.
We have dropped primes on fluctuating quantities for
convenient notations and introduced the total derivative
Dt = ∂t + Uj∂j − ∂j(Uiki)∂kj . Once the solutions of (4)
have been computed, the Reynolds stress is found by an
inverse Gabor transform as:

〈u′iu′j〉 =
∫

dk
(
u′i(k,x, t)u

′
j(−k,x, t)

+(u′i(−k,x, t)u′j(k,x, t)
)
. (6)

Note that the linear part of (4) is exact and describes non-
local interactions between the mean and the fluctuating
part. The major approximation of the model is to lump
the non-linear terms describing local interactions between
fluctuations into a turbulent viscosity νt. The force f ap-
pearing in (4) is a small scale random forces which is in-
troduced to model the seeding of small scales by energy
cascades (for example via turbulent structures, detaching
from the wall).

2.3 The Taylor-Couette case

In the Taylor-Couette (rotating shear flow) case, the equa-
tions for the azimuthal component of the velocity V (r)
simplify into:

∂tV +
1
r2
∂rr

2〈uv〉 = ν

(
∇2V − V

r2

)
· (7)

The equation for the fluctuations (u, v, w) become:

Dtû = 2
krkθ
k2

(Ω + S) û+ 2Ωv̂
(

1− k2
r

k2

)
−νtk2û+ f̂r,

Dtv̂ = 2
k2
θ

k2
û(Ω + S)− 2

krkθ
k2

v̂Ω − (2Ω + S) û

−νtk2v̂ + f̂θ,

Dtŵ = 2
kθkz
k2

û(Ω + S)− 2
krkz
k2

v̂Ω − νtk2ŵ + f̂z. (8)
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Table 1. The detailed analogy between stratified and rotating
shear flow. The notations for the stratified case are from [17].

stratified shear flow rotating shear flow

z r

x θ

∂zU r∂rΩ

βg 2Ω
r sin2 φ

∂zΘ
1
r
∂r(r

2Ω)

w u

θ (rv − w cotφ)

Here, we have used the incompressibility to eliminate the
pressure. These equations have to be supplemented by the
equations describing the ray trajectories:

ṙ = 0, θ̇ = Ω, ż = 0,

k̇r = −kθS, k̇θ = 0, k̇z = 0. (9)

We now introduce a pseudo-temperature

θ̂ = r(v̂ − kθ
kz
ŵ) = ir

ω̂r
kz
, (10)

where ω̂r is the radial vorticity. With this temperature
and using the incompressibility condition k · u = 0, we
can rewrite (8) as:

Dtû = 2S
krkθ
k2

û+ 2
Ω

r

k2
z

k2
θ̂ − νtk2û+ f̂r, (11)

Dtθ̂ = (2Ω + S)rû− νtk2θ̂ + f̂θ. (12)

The set of equation (12) is the exact analog of the equa-
tions describing the behavior of vertical and temperature
fluctuations in a stratified shear flow (see [17–20] for their
expression), provided the correspondence summarized in
Table 1 holds. Note that the analog of the temperature is
not the angular momentum, but related to the z-integral
of the radial vorticity (in Gabor variable, integration on z
is done via division by kz). At large scale, since the ve-
locity profile is axi-symmetric, this integral of the radial
vorticity reduces to the angular momentum, as previously
suggested [13].

2.4 Stability and importance of axi-symmetric modes

The correspondence described in Table 1 generalizes the
well-known analogy established previously [13] for the sta-
bility analysis under axi-symmetric perturbations (case
where kθ = 0). In particular, from (12), one can write
a compact differential equation for ω = uk2:

D2
tω + κ2k2

z

ω

k2
− νk2ω + fω = 0, (13)

where κ2 = 2Ω(2Ω + S) is the epicyclic frequency.
Using the ray equation (9), one can then define a
non-dimensional number B = κ2k2

z/(k2
θ + k2

z) (the
Bradshaw number) which governs the stability of the wave
packet along the trajectory. This number is the analog
of Richardson number in stratified shear flow. For ex-
ample, it can be shown that in the absence of diffusion,
the amplitude of the wavepacket has a monotonic (grow-
ing for one mode, decaying for another one) behavior at
late time for B < 1/4, while it becomes oscillatory for
B > 1/4. Clearly, the oscillatory behavior creates dephas-
ing effects for the Reynolds stresses, which may lead to
its pure cancellation, thereby removing the influence of
the small scales onto the large scale. We therefore identify
the regime with B > 1/4 as a regime with purely laminar
motions, where turbulence effects are strongly suppressed.
This property tends to favor bi-dimensional modes (those
for which kz = 0) since in this case the epicyclic fre-
quency can take any value for non-oscillatory behavior.
The inclusion of diffusion changes the mode selection.
One can indeed check that the viscous decay is propor-
tional to exp(−R−1tS) rather than exp(−R−1(tS)3) for
non-axi-symmetric perturbations. This shows that axi-
symmetric perturbation (with kθ = 0) are favored with re-
spect to non-axi-symmetric perturbation. In this case, the
Bradshaw number becomes independent of the wavenum-
ber of the wave packet, and one can identify a new bound-
ary of stability according to its sign: when it is positive,
axi-symmetric perturbations can be exponentially ampli-
fied and superseed viscous decay. We call this regime “un-
stable”. It is the analog of the convective regime in the
stratified case. In the sequel (Sect. 3), we shall concen-
trate on this regime, leaving the other regime for further
study.

2.5 Completion of the analogy in the unstable case

For axi-symmetric modes, ωr/kz = v and the equation for
the mean angular momentum L can then be written in
equivalent form:

∂tL+
1
r
∂r(r〈uθ〉) = ν

(
∇2L/r − L

r2

)
· (14)

Comparing this equation with the equation giving the
mean temperature profile, we finally remark that the only
difference lies in the viscous terms, because in cylindri-
cal coordinates, the Laplacian includes terms describing
curvature effects. In the most general case, this forbids
the analogy to be drawn at the level on mean profile (i.e.
after integration over r of equation (7): for example, it
is well known that in stratified shear flow, the laminar
temperature profile is linear, while its analog, the laminar
angular momentum profiles varies like: L ∼ Ar2 + B. In
many Taylor-Couette experiments, however, the gap be-
tween the two cylinders is small, and curvature effects can
be neglected. One can for example check that the angular
momentum in the experiments by [6] is linear in the lam-
inar regime, while it flattens at the center of the gap in
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the turbulent regime, exactly like its temperature analog.
In the sequel, we shall assume a small gap geometry, and
neglect curvature effects.

3 Application of the analogy in the unstable
case

The present analogy is the turbulent generalization of a
previously known analogy for axi-symmetric modes. In the
sequel, we shall use previous considerations about stabil-
ity of axi-symmetric modes to assume that the turbulent
properties are dominated by the contribution of the axi-
symmetric modes, i.e. restrict ourselves to these modes.
The relevance of this approximation will be tested by com-
parisons of its predictions regarding some characteristic
quantities measured, in the turbulent regime with experi-
mental data.

3.1 Stability

In the unstable regime, a classical parameter describing
the intensity of the convection is the Rayleigh number:

Ra =
βgD3∆Θ

κν
, (15)

where D is the size of the cell in the stratified direction,
∆Θ is the temperature gradient applied. In most convec-
tion experiments, this number is unambiguously defined
because of the constancy of the gravity at the scale of the
experiment. In the Taylor-Couette case, the gravity de-
pends on the perturbation, and one may wonder how to
define this Rayleigh number in a general way. In a recent
analysis of stability of Taylor-Couette experiment, Esser
and Grossman [21] suggested to evaluate this factor at the
gap center, rc = (r1 + r2)/2, leading to

Ra∗ ≡ −2
Ω

r
∂rL

d4

ν2

∣∣∣
r=rc

,

= 4
η2

(1− η2)2

(
d2

r2
c

− d2

r2
2

)
R2,

= 4
η2(1− η)(3 + η)

(1 + η)4
R2. (16)

In the sequel, we shall use a star label to refer to ana-
log quantities. In (16), we have used κ∗ = ν and in-
troduced the Reynolds number R = r1dΩ1/ν, where r1
is the internal radius, Ω1 the rotation rate at the inner
radius, d the gap width and η = r1/r2. Note that the
analog Rayleigh number Ra∗ varies with the radial as-
pect ratio η. In the small gap approximation η → 1, ex-
periments show that the critical Rayleigh number tends
to a constant Ra∗ ≈ 1706. This value is very close to
the value Ra = 1707.762 obtained in Rayleigh-Bénard
convection for rigid boundary conditions [22]. In sheared
convection, the critical Rayleigh number is modified with
respect to this theoretical value, and display corrections

quadratic in the Reynolds number based on the shear.
In the present case, these correction are proportional to
(1−η)4 → 0, and the critical Rayleigh number stays close
to the un-sheared value Ra = 1707.762. A last modi-
fication of the critical Rayleigh number occurs because
of lateral wall effects. As a result, the critical Rayleigh
number increases with decreasing aspect ratio Γ (lateral
width over radial width). For example, for Γ = 5, 2, 1, 0.5,
Rac = 1779, 2013, 2585, 12113. In most Taylor-Couette ex-
periments, the aspect ratio is very large (typically above 8
or so). So the analog critical Rayleigh number is close
to 1708. However, many modern convection experiment
(reaching very large Rayleigh numbers) deal with a rather
small aspect ratio (Γ ∼ 1). This unfortunately limits the
possibilities of direct comparisons between the Taylor-
Couette experiments and the convective experiments to
values close to the onset of instability. For larger values of
Rayleigh numbers, we shall use extrapolations.

3.2 Angular momentum transfer

A second interesting quantity in convection is the non-
dimensional heat transfer Nu = Hd/κ∆T , where H is
the heat transfer. Via the analogy, the analog of this is
the non-dimensional angular momentum transfer, which
can be computed using the non-dimensional torque G =
T/ν2L, where L is the cylinder length:

Nu∗ ≡
G

Glaminar
,

=
G

R

(1 + η)(1− η)2

4πη
· (17)

The normalization by Glaminar ensures that in the laminar
case, Nu∗ = 1, like in the convective analog.

3.2.1 Instability onset

Theoretical [23] and experimental [24] studies of convec-
tion near threshold lead to identification of two regimes
just above the critical Rayleigh number:

for ε = Ra−Rac
Rac

≤ 1, a linear regime in which

(Nu− 1)
Ra

Rac
= K1ε. (18)

The constant K1 depends on the Prandtl number. For
Pr = 1, it is K1 ≈ 1/0.7 = 1.43 [23].

For larger ε, a scaling regime in which [24]

(Nu− 1)
Ra

Rac
= K2ε

1.23. (19)

Here, K2 is a constant which is not predicted by the the-
ory. In Figure 1, we show how the results of Wendt ob-
tained with η = 0.935 near the instability threshold com-
pare with these two predictions. One sees that the linear
regime is indeed obtained for ε ≤ 10, while the scaling
regime is obtained for larger values of 10 < ε < 100. Fur-
ther from the threshold, one needs to compare with the
turbulent theories of convection.
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Fig. 1. Comparison of the theoretical near instability onset
behavior with the data of Wendt [3]. The symbols are the
experimental measurements. The two lines are the theoreti-
cal formula predicted by analogy with convection for ε < 1
(Nu − 1)Ra/Rac = 1.43ε and for ε > 1 ((Nu − 1)Ra/Rac ∼
ε1.23). In the latter case, the proportionality constant is not
constrained by the analogy, and needs to be adjusted for a
best fit.

3.3 The classical turbulent regimes

Using (17), we can single out some interesting regimes.
Note that since κ∗ = ν, we are in the case of unit Prandtl
number convection, i.e. for example convection in helium
(Pr > 0.7). In the classical theory of convection, one usu-
ally considers three regimes: a first one, labeled as “soft
turbulence”, in which Nu ∼ Ra1/3, 5 × 105 < Ra <
2 × 107 [25]; then for 2 × 107 < Ra < 1011, a “hard
turbulence” regimes in which Nu ∼ Ra2/7 [26]; finally for
Ra > 1011, a ultra-hard turbulence regime in which Nu ∼
Ra1/2 [27,28]. Using the analogy, we see that these three
regimes translate into: for 707 < Rη(1 − η)1/2 < 4472,
G ∼ R5/3; for 4472 < Rη(1− η)1/2 < 3× 105, G ∼ R11/7;
for (1 − η)1/2ηR > 3 × 105, G ∼ R2. To evaluate the
boundary between the two regimes, we have used (16) at
η = 1.

The first regime has been predicted by [2,1] using
marginal stability analysis. The third regime can be de-
rived from Kolmogorov type arguments (see e.g. [6]).
It also corresponds to some upper-bound in the angu-
lar momentum transport [10]. The intermediate regime
is new, and leads to a scaling exponent of 1.57. Experi-
mentally, some of this scaling regimes have been reported,
but not in the same sequence: in his experiments with
0.680 < η < 0.935, Wendt [3] reports a scaling exponent
of 1.5 for 400 < R < 104, followed by a scaling expo-
nent 1.7 for 104 < R < 105. In more recent experiments,
Lathrop et al. [6] measure a “local” exponents
d ln(G)/d ln(R) which varies continuously from 1.2 to 1.9,
with a transition at R ∼ 1.3× 104 (for η = 0.7246). This
transition was later found to correspond to a modification
of coherent structures in the flow [7]. Remarkably enough,
the analog Rayleigh number characterizing this transition
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Fig. 2. Illustration of the three scaling regimes found in con-
vection in helium for Nusselt vs. Rayleigh. The symbols are
experimental measurements by [28]. The lines are theoretical
prediction by [19] using an analytical model of turbulent con-
vection. “Soft” turbulence regime (mean flow dominated):
power law Nu ∼ Ra1/4 (full line); “Hard” turbulence regime:
(velocity fluctuation dominated) Nu ∼ Ra1/3/(ln(Ra))2/3

(dotted line); “Ultra-hard” turbulent regime: (temperature
fluctuations dominated) Nu ∼ Ra1/2/(ln(Ra))3/2 (dashed
line).

is Ra∗ = 2 × 107, like in convection. We may therefore
interpret it as the boundary between “soft” and “hard”
turbulence. However, the scaling reported in [6] does not
seem to fully correspond to the soft and hard turbulence
scaling. In the sequel, we wish therefore to explore a new
possibility, based on logarithmic corrections to scaling.

3.4 The logarithmic turbulent regimes

The observation by [6] that no scaling prevails for the
angular momentum transport has in fact its counter-
part for the heat transport in convection [11]. In a re-
cent work, we used the turbulent model to analytically
compute the heat transport in a convective cell. At
Pr = 1, we found 3 different regimes: at low Rayleigh
number, the dissipation is dominated by the mean flow,
and Nu = K1Ra

1/4Pr−1/12; at larger Rayleigh num-
ber, the kinetic energy dissipation starts being domi-
nated by velocity fluctuations, and the heat transport
becomes NuPr1/9 = K2Ra

1/3/ ln(RaPr2/3/20)2/3. Fi-
nally at very large Rayleigh number, the heat dissipa-
tion becomes also dominated by (heat) fluctuations, and
Nu = K3Ra

1/2/ ln(Ra/Rac)3/2. Figure 2 shows the illus-
tration of these 3 regimes in a helium experiment of [28],
with the three fits corresponding to these 3 regimes. From
this graph, we obtain K1 = 0.31, K2 = 0.45, K3 = 0.023
and Rac = 2 × 107, for an aspect ratio of 0.5. These
constants tend to decrease slightly for larger aspect ra-
tio by an asymptotic factor of about 0.75 (at Ra = 108,
see Tab. 1 of [28]). The small aspect ratio of the exper-
iment also increases the critical Rayleigh for instability
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from near 1708 to near 4 × 104. The boundary between
the regime 1 and 2 lies at Ra = 1.5 × 108. It is charac-
terized by a change in the temperature statistics, going
from nearly Gaussian to exponential. The boundary be-
tween the regime 2 and 3 is somehow ill defined, and lies
between Ra = 2 × 1010 and Ra = 1011. Note than in a
similar experiment, ran by another group, the third regime
was not detected, even at Ra = 1015 [29]. The reason of
this difference is not yet known. A possibility would be
that different boundary conditions may or may not allow
the growth of the temperature perturbation, thereby fa-
voring or inhibiting this last regime [19].

The translation of the three logarithmic regimes using
the analogy gives a priori three possible regimes in the
Taylor-Couette experiments.

In the regime 1, we get:

G = K4
η3/2

(1− η)7/4
R3/2. (20)

In the regime 2, we get:

G = K5
η2/3

(1− η)5/3

R5/3

ln[η2(1− η)R2/K6]2/3
, (21)

while in the regime 3, we get:

G = K7
η2

(1− η)3/2

R2

ln[η2(1− η)R2/K8]3/2
· (22)

In these expressions, we have introduced 5 unknown coef-
ficients, which a priori depend on the aspect ratio. Since
there is no available large Rayleigh number large as-
pect ratio convection experiments, we shall extrapolate or
fit these coefficients by comparison with Taylor-Couette
data.

3.5 Comparison with experiments

For this, we use torque measurements from Wendt [3]
and [6,7]. The regime 1 should be observed at rather mod-
erate Reynolds numbers. Therefore, it explains very well
the old measurements by Wendt [3] who found the same
exact dependence in η and R for 400 < R < 104, and with
a prefactor of K4 = 1.45. The analogy with convection
predicts that K4 = 2πK1. The small aspect ratio convec-
tive experiment extrapolated at large aspect ratio gives
K1 = 0.75× 0.31, which translates into K4 = 1.46. This
is in very good agreement with the prefactor measured by
Wendt.

The second regime predicts torque varying more slowly
than R5/3. It could therefore only marginally explain the
second regime observed by Wendt, for R > 104, in which
G ∼ R1.7. However, it could explain the regime obtained
by [6,7] for R ∼ 104, in which a continuously varying
scaling exponent was obtained. This is shown in Figure 3,
where the fit to the data of [7] is compared with the theo-
retical formula (21). The comparison is made using coeffi-
cients extrapolated from the small aspect ratio convection
experiment: K6 = 20, K5 = 2πK2 with K2 = 0.75× 0.45.
It may happen however that this regime 2 does not exist
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Fig. 3. Torque vs. Reynolds in Taylor-Couette experiments.
The symbols are the data of [7]. The line is the theoretical
formula obtained in the hard turbulence regime and computed
using the analogy with convection G = AR5/3/(ln(R/B))2/3.
The two constants A and B are not fitted to the data, but are
analytically computed using the analogy with convection.
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Fig. 4. Torque vs. Reynolds in Taylor-Couette experiments.
The symbols are the data of [7]. The lines are the theoretical
formula obtained in the soft and ultra-hard turbulence regimes
and computed using the analogy with convection. Soft tur-
bulence equation (20) (full line); ultra-hard turbulence equa-
tion (22) (dotted line). In the former case, all the constants are
analytically computed using the analogy. In the latter case, we
have seek the best adjustment with data by adjusting the two
constants.

in Taylor-Couette experiments. Indeed, since the temper-
ature analog is related to the velocity, it might be im-
possible to excite velocity fluctuations without exciting
pseudo-temperature fluctuations. This would mean a di-
rect transition from regime 1 (mean flow dominated) to
regime 3 (fluctuation dominated). This possibility is ex-
plored in Figure 4, where we show the best fit of the mea-
surements of Lewis and Swinney, with formula (22). This
fit uses K7 = 0.50 and K8 = 104. Notice the big difference
between these constants and their extrapolation from the
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Fig. 5. Torque vs. Reynolds in Taylor-Couette experiments
for different gap widths η = 0.68, η = 0.85 and η = 0.935.
The symbols are the data of [3]. The lines are the theoret-
ical formula obtained in the soft and ultra-hard turbulence
regimes and computed using the analogy with convection. Soft
turbulence equation (20) (full line); ultra-hard turbulence equ
ation (22) (dotted line). There is no adjustable parameter in
this comparison, all the constants being fixed either by the
analogy with convection, or by the comparison with the data
of [7].

convective caseK7 = 0.145 andK8 = 2×107. This may re-
flect the sensitivity to boundary conditions of the regime 3.
Note however that the fit is excellent from R = 103 up to
R = 106. Below R = 104, the regime 1 with K2 = 1.46
fits the data very well also. As a last check, we have com-
pared this regime 3 with the constant fitted for Lewis and
Swinney’s data, to the data of Wendt. The result is shown
in Figure 5, for 3 different gap η = 0.68, 0.85, 0.935. The
agreement is excellent.

3.6 Velocity fluctuations

The analogy can also be used to predict the behavior of
velocity fluctuations. In [7], the azimuthal turbulent in-
tensity iθ =

√
〈u2
θ〉/Uθ was measured at midgap with hot

film probes. Above 1× 104, a fit yields

iθ = 0.10R−0.125. (23)

Using the analogy, this intensity is related to the tem-
perature fluctuations at mid-gap, in the ultra hard tur-
bulent regime (regime 3). The total analog temperature
fluctuation in fact also includes vertical velocity fluctu-
ations (see Tab. 1). In an axisymmetric turbulence, one
could therefore expect that the turbulent intensity mea-
sured by Lewis and Swinney is proportional to the tem-
perature analog. Recent measurements of this quantity at
Rayleigh number up to Ra = 1015 have been measured
by [29] in a low aspect ratio helium experiment. They
found θ/∆T = 0.37Ra−0.145, but this was obtained in a
regime where the Nusselt number varies like in regime 2
(velocity fluctuation dominate but NOT temperature fluc-
tuation). Using the analogy, this would translate into a
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i θ

R

Fig. 6. Azimuthal velocity fluctuations in Taylor-Couette flow.
The circles are the power-law fits of experimental measure-
ments by [7]. The triangles are the power-law fit to the tem-
perature fluctuations (analog of azimuthal velocities) in helium
by [29]. The line is the prediction obtained with the analog of
the free-convective regime [30]. The dotted line is the theoret-
ical formula predicted by our model equation (26).

regime where iθ ∼ R−0.29, in clear contradiction with the
data of Lewis and Swinney, see Figure 6. This might there-
fore be another proof of the absence of the regime 2 in
Taylor-Couette experiment.

Unfortunately, we are not aware of temperature
measurements in convective turbulence in the ultra-hard
regime. In previous analysis of temperature fluctuations in
the atmospheric boundary layer, Deardoff and Willis [30]
showed that temperature fluctuations follow the free
convection regime

θ

∆T
∝ Nu

(PrRaNu)1/3
, (24)

where the proportionality constant is of the order 1.
Figure 6 shows the application of this scaling to the data
of Lewis and Swinney, where the analogy was used to
translate torque and Reynolds into Nusselt and Rayleigh.
The best agreement with the experimental fit of Lewis
and Swinney is obtained for a prefactor 1.8. We can
also compare the results with the theoretical prediction
given by the convective model. In this model [19], the
temperature fluctuations in the boundary layer obey:〈

θ
′2
〉

∆T 2
= λu

Nu5/2

(RaPr)1/2

√
1 + (z/λu)2

1 + (zNu)2
, (25)

where λu is the height of the viscous velocity layer. The
value at the height of the boundary layer is obtained for
z = λBL, the size of the boundary layer, which was shown
to vary like λBL ∼ (RaNu)−1/8/

√
ln(RaNu). Assuming

that the value at mid-gap equals this maximal value, we
obtain:√

〈θ′2〉
∆T

= K10
Nu5/16

Ra3/16
(ln(RaNu/K11))1/4

. (26)
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This prediction is shown in Figure 6, using a fitted prefac-
tors of K10 = 0.16 and K11 = 1. It is in very good agree-
ment with the experimental fit of Lewis and Swinney.

4 Conclusion

In this paper, we have shown how a well-known anal-
ogy between stratified and rotating shear flows, for axi-
symmetric perturbations, can be extended into the turbu-
lent regime. Assuming predominance of the axi-symmetric
perturbation in the turbulence dynamics, we used this
analogy in the unstable case (analogy between convection
and centrifugally unstable Taylor-Couette flow) to predict
the scaling of the momentum transfer and velocity fluctu-
ations. Our prediction is that at low Reynolds number, the
non-dimensional torque follows (20) while at R > 104, it
follows (22). The analogy can also be used to discriminate
between theories about Taylor-Couette turbulent quan-
tities. For example, we have shown that the “classical”
Nu ∼ Ra1/3 regime, translate into a G ∼ Ra5/3 in the
Taylor-Couette flow (both being unobserved experimen-
tally at large Rayleigh or Reynolds number).

The analogy also sheds new light on the recent the-
ory of Eckhardt et al. [8]. It predicts a dependence: G =
c1Re

3/2+5ξ/2 + c2Re
2+3ξ, where ξ = −0.051 is a parame-

ter which has been adjusted to a best fit. When translated
using this analogy, this formula would give in the convec-
tive case: Nu = c1Ra

1/4+5ξ/4 + c2Ra
1/2+3ξ/2. This has to

be compared with the theoretical prediction of Grossman
and Lohse [11], made using the same theory, which leads
to Nu = c1Ra

1/4 + c2Ra
1/3. Clearly, there is no value of ξ

which can reconciliate the two formulae. It would therefore
be interesting to see whether the analog of the Grossman
and Lohse formula, namely: G = c1 = Re3/2 + c2Re

5/3

would not fit the data equally well than the Eckhardt
et al. formula. This would reduce the number of unknown
parameter by one.

It would now be interesting to study in more details
consequences of the analogy in the stable case (i.e. sta-
bly stratified flow vs. centrifugally stable flow). There are
many observational, numerical and experimental results in
the case of stably stratified flows. However, their counter
part in the centrifugally stable rotating case is presently
missing. Recent experiments by Richard [31] performed on
flows between counter-rotating cylinders could help filling
this gap.

Finally, the analogy is of great interest for astro-
physical and geophysical applications. In astrophysics, for
example, many objects are differentially rotating, and
are characterized by very large Reynolds number. These
Reynolds numbers cannot be reached in laboratory ex-
periments. On the other hand, we have at our disposal a
natural high Rayleigh (and Reynolds number) laboratory
of stratified turbulence: the atmospheric boundary layer.
We believe that we could use all the data collected in
our atmosphere to get great insight about large Reynolds
number behavior of rotating, astrophysical shear flows, us-
ing the analogy sketched in the present paper.

We thank François Daviaud for comments on the manuscript.
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